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Seasonal influenza is associated with an estimated 
3,300–48,000 annual deaths in the United States 

(1) and has a major global impact on economies and 
health (2–4). Prospective surveillance with specific 
laboratory testing for influenza is expensive and may 

underestimate the true burden of influenza if such 
tests are underused or insensitive or if influenza re-
sults in complications or hospitalizations beyond 
the period in which virus may be detected in patient 
samples (5). Therefore, the Centers for Disease Con-
trol and Prevention (CDC) and other public health 
organizations use modeling studies to estimate the 
incidence of severe influenza illness to inform pub-
lic health actions (1,3,6–10). Typically, modeling of 
the influenza disease burden links aggregate data for 
outcomes identified in vital statistics or hospitaliza-
tion administrative databases to influenza virologic 
surveillance data over time. The difference between 
estimates with and without influenza covariates is at-
tributed to influenza activity. Such models have been 
used extensively in the United States (10–14), in other 
countries (15–17), and to produce global estimates of 
influenza disease burden (2,3,18–20). The resulting es-
timates of excess influenza-associated events inform 
public health actions, such as vaccine or treatment 
recommendations, as well as patient and healthcare 
provider communications.

In the United States, influenza and most other 
respiratory infections are seasonal and follow an 
approximately sinusoidal curve with winter peaks. 
Climatic and air pollutant parameters, such as tem-
perature, humidity, and ambient fine particulate 
matter, vary during the putative influenza season 
and are associated with acute respiratory infections 
(21). Because these other factors share a seasonality 
similar to influenza, neglecting them may overes-
timate the effects of influenza on health outcomes. 
Influenza models that include meteorological data 
have improved predictive accuracy for viral circu-
lation and peak seasonality (21–23). National and 
global models of influenza disease burden do not 
account for environmental and meteorological  
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parameters, which may be important confounding 
variables (1–3,6–8).

Given the importance of influenza disease bur-
den estimates on public health decision making and 
the reliance on ecologic models that exclude environ-
mental exposure covariates, we undertook this study 
to evaluate the effect of including environmental ex-
posures in traditional models on estimates of influ-
enza disease. We hypothesized that environmental 
exposures would be associated with severe respira-
tory and circulatory (RC) hospitalizations and that 
adjustment for these covariates would have a clinical-
ly meaningful effect on estimates of severe influenza 
disease incidence.

Materials and Methods

Design Overview
We conducted a study using aggregated datasets 
from 3 counties (King, Pierce, and Snohomish) in 
western Washington state during 2001–2012. We 
used administrative hospitalization data, respira-
tory virus surveillance data, and environmental ex-
posure data collected prospectively from the study 
area. The primary analysis was to estimate the in-
cidence of influenza-associated RC hospitalizations 
using standard CDC ecologic models and to assess 
the effect that inclusion of environmental exposure 
variables in these models had on the incidence es-
timates. In a secondary analysis, we added respira-
tory syncytial virus (RSV) as an additional exposure 
covariate into the model. This study received ex-
empt review status from the Human Subjects Divi-
sion at the University of Washington and the Wash-
ington State Department of Health Institutional  
Review Board.

Hospitalization Database
We obtained the Washington State Department of 
Health Comprehensive Hospital Abstract Report-
ing System (CHARS) dataset for the study area and 
time periods. The CHARS database contains pub-
licly available deidentified discharge information 
derived from hospital billing systems for patients 
in all of the public and private hospitals in Wash-
ington (24). The CHARS data contain information 
on age, home ZIP code, and other demograph-
ics, as well as patient diagnoses, procedures, and 
billed charges. We defined RC hospitalizations as 
any listed hospitalizations with codes 390–519 from 
the International Classification of Diseases, 9th 
Edition (5,6,8). We categorized age as 0–6 months, 
7–23 months, 2–4 years, 5–14 years, 15–49 years, 

50–64 years, and >65 years. We calculated aggregate 
RC counts per day, age category, and county and 
merged them with the other datasets for statistical  
analysis. The unit of observation was RC hospital-
ization, which we also call “event” in this report.

Respiratory Virus Surveillance Data
We accessed influenza virus surveillance data from 
3 sources in the study area: University of Washing-
ton Clinical Virology Laboratory, Public Health–Se-
attle & King County, and Seattle Children’s Hospital. 
Each laboratory was in King County and participated 
in the United States Influenza Virologic Surveillance 
System during the study period. Influenza testing 
data were available for September 30, 2001, through 
December 29, 2012, except for the third quarter of 2002 
(25). Clinical specimens collected as part of routine 
care were tested in laboratories for evidence of influ-
enza virus, and results were reported to local and the 
state health departments and CDC. The 3 sites used 
viral culture or reverse transcription PCR (RT-PCR), 
with an increasing use of RT-PCR over the study pe-
riod. We did not include influenza data from Tacoma 
and Snohomish counties. Public health respiratory 
virus surveillance was not conducted in the counties 
during the study period. We reviewed limited influ-
enza testing data from the largest hospital systems 
in each county. Total influenza tests from Tacoma 
(23,741) and Snohomish counties (<3,000) were very 
low compared with those from King County (372,022) 
and were available for only part of our study period 
(2007–2008 and 2008–2012 for Tacoma and 2010–2013 
for Snohomish). Influenza seasonality and peak sea-
sons were similar in all 3 sites. Laboratory reports 
did not consistently distinguish between influenza 
A subtypes or influenza B lineages; therefore, we in-
cluded only influenza A and B as exposure variables. 
The seasonality and temporal peaks of the proportion 
positive of influenza A and influenza B data among 
these sites were similar, so we aggregated each across 
all 3 counties for analyses.

RSV laboratory data were collected as part of 
routine care by the University of Washington Clini-
cal Virology Laboratory and reported to the National 
Respiratory and Enteric Virus Surveillance System; 
these data were available for the period September 
30, 2007–December 29, 2012 (26). RSV tests used anti-
gen detection, viral culture, and RT-PCR testing, with 
RT-PCR use increasing over the period. RSV subtypes 
were not available.

We used weekly surveillance data for our mod-
el. We divided the weekly number of influenza A 
and influenza B detections by the weekly number of  
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influenza tests performed and multiplied the result 
by 100 to calculate a weekly percentage of positive 
tests. We calculated the weekly percentage of positive 
RSV tests similarly.

Environmental and Meteorology Exposure Time Series
We accessed daily meteorology data including tem-
perature, relative humidity, and dew point for 6 
meteorological stations from each of the 3 counties 
studied (27,28) (Appendix Figures 1–5, https:// 
wwwnc.cdc.gov/EID/article/26/5/19-0599-App1.
pdf). The values for the 6 stations were highly corre-
lated (Pearson correlation coefficient range 0.93–0.99). 
Because the data from Boeing Field station in King 
County were the most complete and the station was 
the closest to the urban centers, we used data from 
this station to represent the meteorological exposures 
for the entire study area. For the meteorological data, 
including temperature, relative humidity, and dew 
point, 680 weeks (4,736 days) of data were available, 
leaving <0.005% of days with missing data during the 
study period. 

We also used daily ambient outdoor air pollu-
tion data in the form of concentration of particulate 
matter with a diameter <2.5 μm (PM2.5) (29,30) (Ap-
pendix Figures 6, 7). The PM2.5 concentration data 
were available for 21 stations from each of the 3 
counties, giving a total of 4,581 days of data. Some 
of the stations were distant from urban centers (e.g., 
the Mount Rainier National Park station in Pierce 
County); others had substantial periods with miss-
ing data during the study period. Three stations, 
Seattle–Beacon Hill (King County), Tacoma (Pierce 
County), and Marysville (Snohomish County), were 
close to urban centers and had less missing data; we 
used these sites to define the daily PM2.5 exposures. 
Because the daily PM2.5 exposures for the 3 stations 
were highly correlated with only small systematic 
differences (Pearson correlation coefficients among 
pairs of stations 0.74–0.91), we averaged daily PM2.5 
exposures across the available values for the sta-
tions. The resulting daily average was available in 
96% of the study period.

Population Estimates
We obtained annual age-specific population esti-
mates for each of the 3 counties for 2001–2012 from 
Washington State Office of Financial Management 
(OFM) (30). OFM population estimates for 2000–
2010 are based on the 2000 and 2010 US Census 
and an interpolation in the intermediate years (31). 
OFM population estimates for 2011 and 2012 were 
developed using the component method, which  

derives the estimated population by adding natural 
population change (births minus deaths) and net 
migration to the base-year population (32). Popula-
tion estimates for the 0–6 month, 7–23 month, and 
2–4 year age groups were not available from OFM 
data and were estimated from the annual birth data 
from the Washington State Department of Health 
(32). W carried the annual birth numbers for each 
county forward in time to estimate the population 
sizes for the 0–6 month, 7–23 month, and 2–4 year 
categories at a specific time point. Because births 
were reported annually and our age categories 
included half-year fractions (0–6 month and 7–23 
month), we used halves of the appropriate annual 
birth numbers to estimate population sizes in these 
age categories.

Statistical Analysis
To describe all-cause RC hospitalizations, we cal-
culated rates of any RC hospitalization divided by 
person-time under observation for each age category. 
To estimate influenza-associated events, we adapted 
negative binomial regression models used previously 
by CDC to estimate the incidence of influenza-asso-
ciated hospitalizations from surveillance data and 
administrative hospitalization datasets (5,6,8,33,34). 
We fitted age-specific negative binomial regression 
models to daily events in the 3 counties of interest 
(Appendix). Covariates were time (day expressed as 
a fraction of the year), daily RC hospitalizations in a 
particular county on a particular day, the county’s 
population size in that calendar year, the percentage 
of specimens testing positive in the corresponding 
week for influenza A and influenza B, daily environ-
mental effects, and terms accounting for secular and 
seasonal trends. The offsets for county and popula-
tion in the model account for different population 
sizes across counties and years. The environmental 
effects include the effect of the temperature, humid-
ity, dew point, and PM2.5 concentration. We modeled 
the effect of each of these 4 variables by exposure on 
the same day and by exposure on the previous day 
(one-day lag term). We used a cubic B-spline with 3 
degrees of freedom for both the same day and 1-day 
lag terms for a total of 24 adjustment coefficients for 
the 4 environmental variables.

For each age category, we fit a base model, which 
was similar to CDC ecologic models and excludes 
environmental exposures, and an expanded model, 
which included the environmental exposures. Using 
each fitted model, we calculated the number of age-
specific influenza-associated RC hospitalizations as 
the difference between model-predicted RC hospital-
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izations estimated from the original data and model-
predicted RC hospitalizations with all influenza terms 
set to 0. We calculated the number of type-specific 
influenza-associated RC hospitalizations (influenza A 
or B) in a similar fashion but by setting only one of the 
influenza terms to 0. To express the influenza-asso-
ciated RC hospitalizations as rates, we divided them 
by the age-specific population estimates (presented 
as the number of events per 10,000 person-months 
or 100,000 person-years). We calculated population-
attributable risks (PARs) for influenza-associated RC 
hospitalizations for each age category as the number 
of influenza-associated RC hospitalizations divided 
by the number of all-cause RC hospitalizations. We 
calculated 95% CIs for the number of influenza-asso-
ciated RC hospitalizations, rates, and PARs using the 
nonparametric bootstrap (35).

To assess the effect of inclusion of RSV in our 
models, our secondary analysis expanded the mod-
el by adding an additional term, β35RSV, for the ef-
fect of the percentage of specimens testing positive 
in the corresponding week for RSV. We calculated 
the numbers of virus-specific (disaggregated) and 
the total (influenza + RSV) attributable RC hospi-
talizations as the corresponding rates and PARs. 
We calculated incidence rates for RSV-associated 
outcomes similarly to the influenza outcomes. We 
limited the fit of the RSV model to the period of 
RSV data availability.

We conducted 3 sensitivity analyses based on the 
primary analysis model to assess the effect of alternative 
modeling choices: 1) analysis with the environmental 
exposure modeled as linear instead of as the cubic B-
spline; 2) analysis without the 1-day-lag environmental 
exposure variables; and 3) analysis with weekly events 
instead of daily events. We compared the results of the 
primary analysis to these alternative modeling choices 
and found no major differences. Statistical diagnostics 
of the models included added variable plots and like-
lihood ratio tests for distributed lags (day 2 through 
day 6 lags) and illustrated adequate model fit. We per-
formed analyses with R version 3.1.0 statistical software 
(https://r-project.org).

Results
The study populations ranged from 1,758,779 (King), 
708,230 (Pierce), and 615,435 (Snohomish) in 2001 to 
1,960,782 (King), 808,316 (Pierce), and 723,301 (Snohom-
ish) in 2012. A total of 1,503,081 all-cause RC hospitaliza-
tions occurred in these 3 counties during September 30, 
2001–December 29, 2012, for an overall incidence rate of 
4,600/100,000 person-years. Incidence rates were high-
est at the extremes of age (0–6 months, 5,949/100,000 

person-years; 50–64 years, 6,503/100,000 person-years; 
and >65 years, 23,077/100,000 person-years).

Using the base model, incorporating time 
and seasonality, and excluding environmental ex-
posures, the overall incidence rate of influenza- 
associated RC hospitalizations was 31/100,000 per-
son-years with 0.7% PAR. Event rates varied across 
age groups and had a marked winter seasonality 
over the study period (Figure 1). In the base model, 
influenza-attributable event rates were highest in 
the 0–6 months age group (118.7/100,000 person-
years) and the >65 years age group (157.0/100,000 
person-years). Of these, the influenza A attribut-
able event rate was highest in the same 2 age groups 
(0–6 months, 159.9/100,000 person-years; >65 years, 
81.3/100,000 person-years), and the influenza B rate 
was highest in the >65 years age group (76.2/100,000 
person-years) (Table 1). Overall, influenza A was as-
sociated with higher hospitalization rates than influ-
enza B (21.3 vs. 10.3/100,000 person-years).

In the expanded model incorporating environ-
mental covariates, all the environmental and air pol-
lution covariates were significantly associated with 
RC hospitalizations (p<0.01) for each of the 7 age 
groups (Appendix Table 2); however, the influenza-
associated event rates did not change appreciably 
in any age group (Table 1; Figure 2). The overall in-
fluenza-attributable rate was similar at 31.4/100,000 
person-years (influenza A, 21.3/100,000 person-
years; influenza B, 10.3/100,000 person-years). The 
influenza-associated event rates were highest in the 
0–6 month (111.9/100,000 person-years) and the >65 
years (147.3/100,000 person-years) age groups. PAR 
was highest in the 5–14 years age group (4.8%; 95% 
CI 3.7%–6.0%) (Table 2). When assessed by influenza 
type, influenza A had a greater number of attribut-
able events in all age groups with the exception of the 
>65 years age group (influenza A, 69.3/100,000 per-
son-years; influenza B, 78.4/100,000 person-years). 
Similarly, PAR was greater for influenza A across age 
groups with the exception of the >65 years group (Ta-
ble 2). PAR for influenza was similar in both the base 
(without environmental covariates) and expanded 
(with environmental covariates) models.

Secondary Analysis—Influenza and RSV Models
Among data with other covariates available, RSV data 
were available for 1,811 days and were analyzed with 
influenza in models with and without environmental 
covariates (Appendix Table 1). In the base model in-
corporating time and seasonality, similar to influenza, 
RSV-attributable event rates were highest in the young-
est and oldest age groups. In the expanded model  
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incorporating environmental covariates, the attributable 
event rates for influenza or RSV did not appreciably 
change. PAR for influenza- or RSV-associated RC hos-
pitalizations in the expanded model was 1.0%–12.9% 
and did not differ from the base model results (Table 3).

Sensitivity Analysis—Examining Alternative  
Modeling Choices
We performed sensitivity analysis evaluating alternative 
modeling choices: environmental covariates modeled 
as linear; environmental covariates modeled without 
lag terms; and models run on weekly aggregates. We 
ran these alternative models for influenza alone (pri-
mary analysis) and for influenza with RSV (secondary 
analysis). We found, as in our primary analysis, that age- 
specific models with all assessed environmental and air 
pollution parameters were significantly associated with 
RC hospitalizations (p<0.05 for each age group). How-
ever, we saw no meaningful changes in the attributable 
event rates (Appendix Figures 8, 9). 

Discussion
We conducted a population-based study incorporat-
ing hospitalization, laboratory, and meteorological 

data from 3 Washington counties over 12 years to es-
timate the burden of influenza- and RSV-associated 
RC hospitalizations. Hospitalization rates peaked 
during the winter, corresponding to periods of in-
fluenza circulation, and the highest rates were at the 
extremes of age for both influenza and RSV events. 
Our overall influenza-associated hospitalization rate 
estimate was 31/100,000 years. This is similar to CDC 
estimates of 55.0/100,000 person-years (95% CI 22.5–
125.4) over a period including the 1990s, which was 
notable for high rates of severe influenza (6,7). Our 
age-specific models with all assessed environmental 
and air pollution parameters demonstrated that fac-
tors of temperature, relative humidity, dew point, 
and particulate matter were significantly associated 
with RC hospitalizations (p<0.01 for each age group).  
However, the inclusion of environmental covariates 
did not result in clinically meaningful changes in 
respiratory virus–associated event estimates. In ad-
dition, we conducted several alternative models, in-
cluding linear adjustments for environmental param-
eters (instead of cubic-splines), models without lags 
for environmental parameters (versus models with 
lags), and models on weekly-aggregated data (versus 

Figure 1. Influenza detections and respiratory and circulatory hospitalizations in western Washington, USA, 2001–2012. A) Total 
detections of influenza by clinical laboratories and public health surveillance. B) Incidence of all-cause respiratory and circulatory 
hospitalizations by age group..
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daily-aggregated), which led to the same conclusions 
and added confidence to our results.

Several environmental parameters have been 
found to improve forecasts of influenza activity, 
and they may contribute to influenza illness in sev-
eral ways. Climatic variables, such as temperature 
and humidity, increase the survival and spread of 

influenza in the environment (23,36). These same 
factors change human behaviors and enhance vi-
rus transmission by driving people indoors and 
increasing crowding. Air pollution increases every 
winter and is significantly associated with respi-
ratory infections (37). Certain climate conditions, 
including temperature, humidity, and particulate  

 
Table 1. Influenza-associated respiratory and circulatory hospitalizations by age group modeled with and without environmental 
covariates, October 2001–December 2012* 

Model type and age group 

All influenza-
attributable 

events 

All influenza-
attributable 

events/100,000 
person-years 

Influenza A–
attributable 

events† 

Influenza A–
attributable 

events/100,000 
person-years† 

Influenza B–
attributable 

events 

Influenza B– 
attributable 

events/100,000 
person-years 

Without environmental covariates‡      
 0–6 mo 254 118.7 342 159.9 −92 −42.9 
 7–23 mo 88 13.8 176 27.6 −90 −14.1 
 2–4 y 218 17.5 242 19.4 −25 −2.0 
 5–14 y 735 17.5 547 13.0 199 4.7 
 15–49 y 2,108 12.4 1,835 10.8 276 1.6 
 50–64 y 2,204 37.3 1,849 31.3 358 6.1 
 >65 y 5,376 157.0 2,782 81.3 2,609 76.2 
With environmental covariates‡      
 0–6 mo 239 111.9 308 143.9 −71 −33.2 
 7–23 mo 87 13.6 174 27.2 −89 −13.9 
 2–4 y 215 17.2 240 19.3 −26 −2.1 
 5–14 y 741 17.6 571 13.6 181 4.3 
 15–49 y 1,885 11.1 1,618 9.5 270 1.6 
 50–64 y 2,064 34.9 1,667 28.2 401 6.8 
 >65 y 5,043 147.3 2,371 69.3 2,685 78.4 
*The number of all influenza-attributable events is not equal to the sum of influenza A and influenza B events because the 2 types of influenza exposure 
are not independent and their attribution can overlap.  
†We could not discern between influenza A(H3N2) and influenza A(H1N1) because of testing limitations over the study period.  
‡Environmental covariates included daily averages of temperature, relative humidity, dew point, and particulate matter with a diameter <2.5 μm.  

 

Figure 2. Influenza-
associated hospitalization 
risk by age, with and without 
inclusion of environmental 
covariates, western 
Washington, USA, 2001–
2012. A) Influenza A; B) 
influenza B.
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matter can affect susceptibility to upper respiratory  
infections (38–41). Despite these well-known as-
sociations between environmental exposures and 
respiratory events, our study found that their in-
clusion in a model designed to estimate influenza 
illness in western Washington had a negligible 
effect. Whether their influence on disease burden 

estimates remains small in regions with more ex-
treme weather or air pollution is unclear.

Our study should be interpreted in light of its 
strengths and limitations. Because our data were 
from western Washington state, the study may not be  
generalizable to other regions in which environ-
mental factors may differ. Our focus on a limited  

 
Table 2. Population attributable risk of influenza-associated respiratory and circulatory hospitalizations by age group modeled with and 
without environmental covariates, October 2001–December 2012 

Model type  
Age group 

0–6 mo 7–23 mo 2–4 y 5–14 y 15–49 y 50–64 y ≥65 y 
Without environmental covariates*       
 All influenza, % 2.0 (0.6–3.4) 0.8 (−0.8 to 

2.3) 
2.0 (0.6–3.4) 4.8 (3.7–6.0) 0.8 (0.3–1.1) 0.6 (0.2–1.0) 0.7 (0.4–1.0) 

 Influenza A, %† 2.7 (1.4–4.0) 1.5 (0.2–2.9) 2.3 (1.0–3.5) 3.6 (2.5–4.7) 0.7 (0.3–1.0) 0.5 (0.1–0.8) 0.4 (0.1–0.6) 
 Influenza B, % −0.7  

(−1.6 to 0.2) 
−0.8 

(−1.6 to 0.1) 
−0.2  

(−1.1 to 0.6) 
1.3  

(0.7–1.9) 
0.1  

(−0.1 to 0.3) 
0.1  

(−0.1 to 0.3) 
0.3  

(0.1–0.5) 
With environmental covariates*       
 All influenza, % 1.9 (0.5–3.3) 0.8 (−0.8 to 

2.2) 
2.0 (0.6–3.4) 4.8 (3.7–6.0) 0.7 (0.3–1.0) 0.5 (0.1–0.9) 0.6 (0.3–1.0) 

 Influenza A, %† 2.4 (1.2–3.7) 1.5 (0.1–2.9) 2.3 (1.0–3.5) 3.7 (2.6–4.8) 0.6 (0.2–0.9) 0.4 (0.0–0.8) 0.3 (−0.0 to 
0.6) 

 Influenza B, % −0.6 
(−1.4 to 0.4) 

−0.8 
(−1.6 to 0.1) 

−0.2 
(−1.1 to 0.6) 

1.2 
(0.5–1.8) 

0.1 
(−0.1 to 0.3) 

0.1 
(−0.1 to 0.3) 

0.3 
(0.1–0.5) 

Difference‡        
 All influenza −0.1 0 0 0 −0.1 −0.1 −0.1 
 Influenza A† −0.3 0 0 0.1 −0.1 −0.1 −0.1 
 Influenza B 0.1 0 0 −0.1 0 0 0 
*Environmental covariates included daily averages of temperature, relative humidity, dew point, and particulate matter with a diameter <2.5 μm. 
†We could not discern between influenza A(H3N2) and influenza A(H1N1) because of testing limitations over the study period.  
‡With covariates minus without covariates. 

 

 
Table 3. Secondary analysis of population attributable risk (PAR) of influenza or respiratory syncytial virus (RSV)-associated 
respiratory and circulatory hospitalizations by age group modeled with and without environmental covariates, September 2007–
December 2012 

Model type 
Age group 

0–6 mo 7–23 mo 2–4 y 5–14 y 15–49 y 50–64 y ≥65 y 
Without environmental covariates*       
 All influenza and  
 RSV, % 

14.0 
(10.0–17.6) 

6.5 
(2.0–10.6) 

6.9 
(2.6–10.9) 

8.3 
(5.1–11.3) 

1.2 
(0.2–2.3) 

1.4 
(0.1–2.6) 

0.6 
(−0.4 to 1.5) 

 Influenza A,† % 1.9 
(−0.1 to 3.9) 

2.7 
(0.4–5.0) 

2.7 
(0.5–4.6) 

5.8 
(4.0–7.5) 

0.7 
(0.2–1.2) 

0.6 
(−0.0 to 1.1) 

0.0 
(−0.5 to 0.5) 

 Influenza B, % −0.4 
(−1.9 to 1.0) 

−0.9 
(−2.5 to 0.6) 

0.2 
(−1.1 to 1.4) 

1.7 
(0.7–2.7) 

−0.0 
(−0.3 to 0.3) 

0.2 
(−0.1 to 0.6) 

0.4 
(0.1–0.7) 

 RSV, % 12.8 
(9.4–15.8) 

4.8 
(1.0–8.0) 

4.2 
(0.9–7.6) 

1.1 
(−1.8 to 3.8) 

0.5 
(−0.3 to 1.3) 

0.6 
(−0.4 to 1.6) 

0.2 
(−0.6 to 1.0) 

With environmental covariates*       
 All influenza and  
 RSV, % 

12.9 
(8.6–16.7) 

6.9 
(2.3–10.9) 

7.4 
(3.0–11.6) 

10.2 
(6.9–13.4) 

1.7 
(0.6–2.7) 

1.9 
(0.6–3.1) 

1.0 
(0.0–2.0) 

 Influenza A,† % 2.0 
(0.0–4.0) 

2.8 
(0.4–5.0) 

3.1 
(1.0–5.0) 

6.1 
(4.3–7.8) 

0.6 
(0.1–1.1) 

0.5 
(−0.1 to 1.0) 

−0.1 
(−0.6 to 0.4) 

 Influenza B, % −0.4 
(−1.8 to 1.0) 

−1.0 
(−2.6 to 0.6) 

−0.0 
(−1.3 to 1.2) 

1.6 
(0.6–2.6) 

−0.0 
(−0.3 to 0.3) 

0.2 
(−0.1 to 0.5) 

0.4 
(0.1–0.7) 

 RSV, % 11.5 
(8.1–14.6) 

5.1 
(1.3–8.6) 

4.4 
(0.8–8.2) 

2.8 
(−0.1 to 5.6) 

1.1 
(0.2–2.0) 

1.2 
(0.1–2.2) 

0.7 
(−0.1–1.5) 

Risk difference‡        
 All influenza −1.1 0.4 0.5 1.9 0.5 0.5 0.4 
 Influenza A† 0.1 0.1 0.4 0.3 −0.1 −0.1 −0.1 
 Influenza B 0 −0.1 −0.2 −0.1 0 0 0 
 RSV −1.3 0.3 0.2 1.7 0.6 0.6 0.5 
*Environmental covariates included daily averages of temperature, relative humidity, dew point, and particulate matter with a diameter <2.5 μm. 
†We could not discern between influenza A(H3N2) and influenza A(H1N1) because of testing limitations over the study period.  
‡With covariates minus without covariates. 
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geographic area can increase confidence that the 
population studied was truly exposed to the envi-
ronmental covariates used in our models, but this 
design choice limits our ability to evaluate rarer 
outcomes, such as critical illness or death. We used 
clinical and virologic surveillance data to model the 
incidence rates for severe influenza but did not have 
specific data relating to influenza vaccine, and we 
were not able to incorporate other respiratory vi-
ruses because we lacked robust surveillance data for 
the study period. For influenza and RSV, the use of 
percent positive rather than absolute numbers in the 
model corrects for changing surveillance intensity 
over time but may decrease estimates of disease in-
cidence during intense seasons when testing volume 
also increases. We did not have subtype information 
for influenza or RSV available, which limited our 
ability to assess whether certain circulating strains 
were more affected by environmental covariates. Of 
the meteorological and pollution factors, we did not 
assess absolute humidity, wind velocity, sunshine 
duration, ozone, or other measures of pollution, and 
it is possible that one or more of these factors either 
independently or in addition may have modified 
the effect on influenza- or RSV-associated RC hos-
pitalizations. Finally, this is an ecologic study, and 
the results may not necessarily be representative of 
patient-level associations. Regardless, this compre-
hensive study spans over a decade of data using 
expanded standard ecologic models to assess the re-
lationships of respiratory virus–associated hospital-
izations and meteorological and pollution variables 
in a large population comprising children and adults.

In conclusion, our population-based study in 
western Washington state over 12 years assessed 
how incorporation of environmental and air pollu-
tion covariates can influence influenza- and RSV-
associated disease burden estimates. Our modeled 
estimates for influenza and RSV hospitalization 
rates were similar to national rates and changed 
little with incorporation of seasonal environmen-
tal covariates. Our study should strengthen con-
fidence in the traditional ecologic models used to 
estimate influenza illness. In addition to continued 
efforts to reduce the extent of vaccine-preventable 
respiratory viral disease, future work should assess 
the role environmental parameters have on severe 
influenza and RSV outcomes in regions with more 
extreme pollution and meteorological exposures. 
Finally, there is ample evidence that environmental 
pollution is deleterious to health, irrespective of its 
impact on influenza, and more needs to be done to 
improve the quality of air we breathe.
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